Successful structure learning from observational data
نویسندگان
چکیده
منابع مشابه
Learning Optimal Policies from Observational Data
Choosing optimal (or at least better) policies is an important problem in domains from medicine to education to finance and many others. One approach to this problem is through controlled experiments/trials but controlled experiments are expensive. Hence it is important to choose the best policies on the basis of observational data. This presents two difficult challenges: (i) missing counterfac...
متن کاملLearning from observational data with prior knowledge
ion Domain layer Inference layer Task layer Strategy layer Figure 2: Degree of abstraction theoretical view When comparing the layers according to degree of abstraction, the above ordering suggests the idea of Fig. 2. However, the design of the strategy layer is, in practice, tightly bound with the problem domain, and can be viewed as more specific than the inference and task layers. Fig. 3 is ...
متن کاملInferring interventional predictions from observational learning data.
Previous research has shown that people are capable of deriving correct predictions for previously unseen actions from passive observations of causal systems (Waldmann & Hagmayer, 2005). However, these studies were limited, since learning data were presented as tabulated data only, which may have turned the task more into a reasoning rather than a learning task. In two experiments, we therefore...
متن کاملLearning Deterministic Causal Networks from Observational Data
Previous work suggests that humans find it difficult to learn the structure of causal systems given observational data alone. We show that structure learning is successful when the causal systems in question are consistent with people’s expectations that causal relationships are deterministic and that each pattern of observations has a single underlying cause. Our data are well explained by a B...
متن کاملLearning Bayesian Network Structure from Distributed Data
We propose a collective method to address the problem of learning the structure of a Bayesian network from a distributed heterogeneous data sources. In this case, the dataset is distributed among several sites, with different features at each site. The collective method has four steps: local learning, sample selection, cross learning, and combination of the results. The parents of local nodes c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cognition
سال: 2018
ISSN: 0010-0277
DOI: 10.1016/j.cognition.2018.06.003